Combining contextual and local edges for line segment extraction in cluttered images
نویسنده
چکیده
Automatic extraction methods typically assume that line segments are pronounced, thin, few and far between, do not cross each other, and are noise and clutter-free. Since these assumptions often fail in realistic scenarios, many line segments are not detected or are fragmented. In more severe cases, i.e., many who use the Hough Transform, extraction can fail entirely. In this paper, we propose a method that tackles these issues. Its key aspect is the combination of thresholded image derivatives obtained with filters of large and small footprints, which we denote as contextual and local edges, respectively. Contextual edges are robust to noise and we use them to select valid local edges, i.e., local edges that are of the same type as contextual ones: dark–to–bright transition of vice-versa. If the distance between valid local edges does not exceed a maximum distance threshold, we enforce connectivity by marking them and the pixels in between as edge points. This originates connected edge maps that are robust and well localized. We use a powerful two-sample statistical test to compute contextual edges, which we introduce briefly, as they are unfamiliar to the image processing community. Finally, we present experiments that illustrate, with synthetic and real images, how our method is efficient in extracting complete segments of all lengths and widths in several situations where current methods fail.
منابع مشابه
Contour Segment Matching by Integrating Intra and Inter Shape Cues of Objects
In this paper we propose an algorithm for contour-based object detection in cluttered images. Contour of an object shape is approximated as a set of line segments and object detection is framed as matching contour segments of an image (i.e.,an edge image) to a boundary model of an object (i.e., a line drawing). Local shape is abstracted as a group of k-adjacent segments. We use a multi-level sh...
متن کاملObject Detection by Contour Segment Networks
We propose a method for object detection in cluttered real images, given a single hand-drawn example as model. The image edges are partitioned into contour segments and organized in an image representation which encodes their interconnections: the Contour Segment Network. The object detection problem is formulated as finding paths through the network resembling the model outlines, and a computa...
متن کاملGradient Networks: Explicit Shape Matching Without Extracting Edges
We present a novel framework for shape-based template matching in images. While previous approaches required brittle contour extraction, considered only local information, or used coarse statistics, we propose to match the shape explicitly on low-level gradients by formulating the problem as traversing paths in a gradient network. We evaluate our algorithm on a challenging dataset of objects in...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1411.4296 شماره
صفحات -
تاریخ انتشار 2014